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Abstract
The aim of this work is to present a damage identification method dedicated to truss and frame structures. The
core of the approach is the Virtual Distortion Method, which is a fast reanalysis method successfully applied
to damage identification. Loss of mass and stiffness are modelled by virtual distortions and modifications
of the parameters are calculated as a result of a sensitivity-based minimisation. In this paper we deal with a
steady-state problem i.e. low frequency, non-resonance harmonic excitation induces a static-like structural
response with virtual distortions (design variables) modelling parameter modifications.

1 Introduction

The presented approach to damage identification is a continuation of research done within the PiezoDia-
gnostics (PD) project [1]. The general purpose of the PD project was identification of corrosion (or damage
of considerable extent) in pipelines. Generation and detection of a global structural mode by piezo-actuators
and sensors was tested in the PD project. Perturbations of the mode due to various damage scenarios were
investigated. A software tool, based on the Virtual Distortion Method (VDM), was developed [2]. The tool
is able to perform damage identification via the solution of an inverse, dynamic problem in the time do-
main thanks to employing gradient-based optimisation. As VDM-based identification belongs to the class of
model updating methods, a well-calibrated FE model is required in order to produce meaningful results with
experimental data. In this paper, the possibility of carrying out the analogous damage identification in the
frequency domain is explored. The principal motivation for developing the new frequency-based approach
was the reduction of vast consumption of computational time, observed in the previous approach. In the first
step, a simplified dynamic problem with no damping is considered. A number of selected excitation frequen-
cies of low range (below 1 kHz) are the subject of analysis. The proposed approach has been implemented
in a software code [3]. Two structural models are used to show the effectiveness of the new software – truss
and beam. In both models, stiffness and mass reduction are considered as damage parameters. Experimental
verification of the approach using a 3D truss structure is on the way.

2 VDM for a steady-state problem

The use of VDM in dynamic damage identification was previously discussed in [4]-[6]. The considerations
concerned modifications of stiffness parameters of truss and frame-like structures in the time domain, in
which dynamic analysis using the VDM is numerically time consuming. In this paper an alternative approach
to damage identification in the frequency domain is discussed.



2.1 Virtual distortions and modification parameters

The virtual distortion is an initial perturbation introduced to a finite element of an original structure sub-
jected to external excitation realised by the load component p0

k(t, ω) – modelling inertia modification or the
strain component ε0

α(t, ω) – modelling stiffness modification (t, ω denote time and frequency of excitation,
respectively).

For a truss finite element α, the deformation state is determined by just one strain component εα(t, ω).

Relation between virtual distortions ε0
α(t, ω), p0

k(t, ω) and the modified stiffness parameter µα = k̂EA
α

kEA
α

called modification parameter, is expressed by the formula (see [4]):

k̂EA

kEA
εα(t, ω) = εα(t, ω)− ε0

α(t, ω) or µα εα(t, ω) = εα(t, ω)− ε0
α(t, ω), (1)

Let us notice, that the modifications of both the Young’s modulus E as well as cross-section area A of an
element α can be modelled. Moreover, the updated strain εα(t, ω) depends on virtual distortions ε0

α(t, ω)
and p0

k(t, ω), thus the Eqn (1) is non-linear.

Any deformation state for a 2D-Beam finite element specifies 3 components (orthogonal base) obtained by
solving the eigenvalue problem of its stiffness matrix. On this element, the virtual distortions corresponding
to the 3 components are imposed. The virtual distortions have an oscillating form (presented in Fig. (1) for
amplitude values) with frequency of excitation ω. The relation between the modification parameters µα and

Figure 1: Basic virtual distortion states.

distortions come from the following postulate: The response of the modelled structure by virtual distortion
has to be identical to the modified response in the sense of the strain and stress fields. For 2D-Beam finite
element, the relations analogous to Eqn (1) are expressed by the equations:

µ(1)
α ε(e)

α (t, ω) = ε(e)
α (t, ω)− ε(e) 0

α (t, ω),

µ(2)
α κ(e)

α (t, ω) = κ(e)
α (t, ω)− κ(e) 0

α (t, ω), µ(3)
α χ(e)

α (t, ω) = χ(e)
α (t, ω)− χ(e) 0

α (t, ω). (2)

The first equation of the set (2) concerns axial stiffness (similarly to Eqn (1)) and the remaining ones de-
scribe bending states, where µ

(2)
α = µ

(3)
α = k̂EJ

α

kEJ
α

is the ratio of a modified bending stiffness to the origi-

nal one. Further, we assume the modifications of cross-section area (µ(1)
α = Âα

Aα
) and moment of interia

(µ(2)
α = µ

(3)
α = Ĵα

Jα
) independently. For the whole structure, the vectors of strains and stiffness modification

parameters are built:

εα(t, ω) = {ε(e)
1 , κ

(e)
1 , χ

(e)
1 , . . . ε(e)

n , κ(e)
n , χ(e)

n }, (3)

µα = {µ(1)
1 , µ

(2)
1 , µ

(3)
1 , . . . µ(1)

n , µ(2)
n , µ(3)

n }. (4)

The vector of the virtual distortions have an analogous form to Eqn (3). Thus, the Eqn (2) can be expressed
concisely for the whole structure as:

µα εα(t, ω) = εα(t, ω)− ε0
α(t, ω). (5)

The second kind of the virtual distortion – force virtual distortion p0
k(t, ω) is supposed to model modifi-

cations of inertia. Contrary to stiffness distortions ε0
α(t, ω) assigned to element α, the interia distortions



correspond to k degrees of freedom of the structure. These distortions p0
k depend on the predetermined

frequency ω of external excitation.

For a steady-state harmonic excitation, the virtual distortions can be written in the following form:

ε0
α(t, ω) = ε0

α(ω) sin(ω t), p0
k(t, ω) = p0

k(ω) sin(ω t), (6)

where ε0
α(ω) and p0

k(ω) are amplitudes of the generated virtual distortions.

For further considerations, let us introduce now the notion of unit distortions. Unit virtual distortion ε0
α(t, ω)

is an initial, oscillating strain imposed on finite element that would cause strain with unit amplitude in that
element taken out of structure. Analogously, force unit virtual distortion p0

k(t, ω) is an initial, oscillating
force. Onwards in all next equations, the amplitudes are used assuming the following notation:

ε0
α(ω) = ε0

α, p0
k(ω) = p0

k, (7)

where ω indicates the dependency on frequency.

2.2 Influence matrices

The crucial point for VDM calculations is the influence matrix containing amplitudes obtained for unit
distortions. For steady-state problems two influence matrices are generated: strain influence matrix Diβ(ω)
storing displacements generated for unit strain distortions ε0

β(ω) = 1 and inertia influence matrix Dik(ω)
storing displacements generated for unit force distortions p0

k(ω) = 1.

Knowing the virtual distortions ε0
α and p0

k and influence matrices, the updated response in displacements can
be calculated (without re-computing stiffness and mass matrices) as follows:

ui = uL
i + Diβ ε0

β + Dik p0
k, (8)

where uL
α denotes amplitudes of displacements of the original structure determined for the excitation fre-

quency ω. Thus the actual response ui depends on two virtual distortions ε0
α(ω) and p0

k(ω). Multiplying
Eqn (8) by LαQTQi, the updated strain can be calculated as follows:

εα = εL
α + Bαβ ε0

β + Bαk p0
k, (9)

where:
εα = LαQTQi ui, Bαβ = LαQTQiDiβ, Bαk = LαQTQiDik, (10)

and LαQ – geometry matrix, TQi – matrix of transformation to the global coordinate system.

It is necessary to quickly calculate the quantities fA (e.g. displacement or strains), which correspond to the
measured responses fM

A . To this end, the generalized influence matrices D̆Aα and D̆Ak are built utilizing
the initial matrices: Diβ , Dik,Bαβ , Bαk. Finally, the updated response of a selected quantity (e.g strain) is
determined in the following way:

fA = fL
A + D̆Aα ε0

α + D̆Ak p0
k, (11)

where fL
A denotes amplitudes of the requested responses of the original structure.



3 Problem formulation

Generally, the equations of motion for a finite element model are expressed by well-known formula:

Mü(t) + Cu̇(t) + Ku(t) = f(t), (12)

where M, C and K are mass, damping and stiffness matrices, respectively and f(t) is the vector of external
forces. In further considerations the influence of damping will be neglected. The vectors of external load
and displacement for a steady-state problem are expressed as:

f(t) = f sin(ωt), u(t) = u sin(ωt). (13)

Taking into account the relations in Eqn (13), the equations of motions (12) for a steady-state problem for
the original structure and the modified one take the following form:

−ω2Mu + Ku = f , or − ω2Mu + TSε = f , (14)

−ω2M̂u + K̂u = f , or − ω2M̂u + TŜε = f , (15)

where ω – harmonic frequency, M̂ and K̂ – modified mass and stiffness matrix, T – transformation matrix.
The matrices S and Ŝ depend on length, axial EA and bending EJ stiffness of finite elements of the original
and modified structure, respectively. Now, we can write the equations of motion (mass and stiffness matrices
are intact) with imposed virtual distortions ε0

α and p0
k on finite elements:

−ω2Mu + TS(ε− ε0) = f + p0. (16)

To determine the virtual distortions p0
k, let us compare the Eqn (15) and Eqn (16):

−ω2 (M− M̂)u = p0. (17)

The difference Mij − M̂ij for beam structures can be expressed in the following way:

Mij − M̂ij = ∆Mij = (1− µA
γ )

A

Mγ
ij + (1− µJ

γ )
J

Mγ
ij , (18)

where µA
γ = Âγ

Aγ
, µJ

γ = Ĵγ

Jγ
are modification parameters for element γ. The mass matrix is decomposed into

matrix
A

Mγ
ij – depending on cross-section area Aγ and matrix

J

Mγ
ij – depending on moment of interia Jγ . Let

us notice that the following relation holds:

Mij =
∑

γ

A

Mγ
ij +

∑
γ

J

Mγ
ij . (19)

In order to determine the virtual distortions ε0
α, p0

k, let us substitute Eqn (9) to Eqn (5) and Eqn (8) to
Eqn (17), yielding:

[
δαβ − (1− µα) Bαβ − (1− µα) Bαk

−ω2∆MijDjβ δik − ω2∆MijDjk

] [
ε0
β

p0
k

]
=

[
(1− µα) εL

α

ω2∆Miju
L
j

]
. (20)

The calculated virtual distortions ε0
α, p0

k (for assumed vector of stiffness parameters µα) from the set of
equation (20) are used to compute updated response fA corresponding to the measured one fM

A . Further,
the vector of stiffness modification parameters µα is iteratively determined by minimisation of the proposed
objective function:

F (µα) =
∑
ω

∑

A

(
fA − fM

A

)2
, (21)

using the gradient approach.



4 Damage identification technique

In order to determine the control parameters µα, an iterative update of the modification parameters is pro-
posed:

µ(i+1)
α = µ(i)

α −∆F (i) ∇F (i)

∇F (i)
[∇F (i)

]T
, (22)

where

∇F (i) =
∂F (i)

∂µ
(i)
α

=




∂F (i)

∂ε
(i)0
β

∂ε
(i)0
β

∂µ
(i)
α

∂F (i)

∂p
(i)0
k

∂p
(i)0
k

∂µ
(i)
α


 = 2

∑
ω

∑

A

(
fA − fM

A

)



D̆Aβ
∂ε

(i)0
β

∂µ
(i)
α

D̆Ak
∂p

(i)0
k

∂µ
(i)
α


 , (23)

is the gradient of the objective function in i− th iteration. For reaching the optimum solution of the function

(21), the gradients
∂ε0

β

∂µα
and ∂p0

k
∂µα

have to be calculated. To this end, let us differentiate the Eqn (20) with
respect to modification parameters µα:

[
δαβ − (1− µα) Bαβ − (1− µα) Bαk

−ω2∆MijDjβ δik − ω2∆MijDjk

] 


∂ε0
β

∂µα
∂p0

k
∂µα


 =

[
−εα

ω2 ∂∆Mij

∂µα
uj

]
. (24)

Let us notice in Eqn (24) that the left-hand side matrix is the same as in Eqn (20), whereas the right-hand
side depends on updated displacements and strains.

5 Numerical examples

5.1 Cantilever beam

As an illustration of the discussed damage identification method, let us consider a simple cantilever beam
divided into 25 finite elements, shown in Fig. (2). The original parameters are identical in all finite elements:

• cross-section area A = 1 · 10−4 m2,

• moment of interia J = 1.0417 · 10−12 m4.
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Figure 2: Tested 2D beam structure.

The harmonic excitation – bending moment and axial force – is applied to the free end of the cantilever and
expressed by the relations:

M = M0 sin (ωt) , P = P 0 sin (ωt) , (25)

with the amplitudes: M0 = 1 [Nm], P 0 = 100 [kN ] and the applied frequency ω = {50, 100, 220} [Hz]
(out of resonance). The measured data were numerically simulated for each frequency ω (all components of
strain responses εM

α ). The results of inverse analysis are presented in Fig. (3) for cross-section modification
µA

α , and in Fig. (4) – for the moment of inertia modification µJ
α.
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Figure 3: Identified cross-section areas after 500 iterations.
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Figure 4: Identified moments of inertia after 500 iterations.



5.2 2D Truss structure

For the truss finite element, there is only one variable to be modelled, namely cross-section area modification
µA

α = Â
A . Thus for the structure presented in Fig. (5), there are 20 unknown parameters µα. In Fig. (6),

the results of the frequency-domain approach (VDM-F) are compered with the outcome of the previously
described (see [2]) time-domain approach (VDM - time domain).
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Figure 5: Tested 2D truss structure
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Figure 6: Numerical results of the tested 2D truss structure

6 Experimental stand

The experimental stand of a simply supported 3D steel truss structure (70 elements) is presented in Fig. (7).
The harmonic excitation is realised by a piezo-actuator in the middle of the structure (see lower left corner
in Fig. (7b)). The response of the structure is measured by thin piezo-patch sensors glued on elements and
transmitted to oscilloscope. In the truss demonstrator, various damage scenarios due to replacing the initial
truss elements with other ones of different stiffness and mass will be investigated. The experiment is now at
the stage of matching model parameters to experimental responses.



Figure 7: Experimental stand – 3D truss structure. (a) piezo-sensor, (b) general view.
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